
ACM Web Service Tutorial

19/12/2014

ACM STUDENT CHAPTER AUTH

ACMCHAPTER@AUTH.GR

FB: ACM STUDENT CHAPTER AUTH

mailto:ACMChapter@AUTH.gr

Outline
Introduction

◦ What is WSDL/SOAP
◦ WSDL Definition
◦ Alternatives
◦ Who the hell uses WSDL/SOAP in 2014?

Tutorial
◦ Requirements
◦ WSDL

◦ WSDL Service

◦ WSDL Client

◦ WSDL Remote Client

◦ Servlet
◦ Set up Servlet

◦ Test servlet with browser

◦ WSDL to HTTP: Wrap WSDL Client in Servlet

◦ Java Applications as (OS) Services

What is WSDL/SOAP

◦ WSDL is a syntactic (data-type) Description of Web Service APIs
◦ Platform/language independent

◦ SOAP is the exchange protocol

◦ Both are XML-based

◦ W3C Recommendation from 2001 - http://www.w3.org/TR/wsdl

◦ Wide-spread in research
◦ due to well-defined syntactic modelling, it aids:

◦ SwEng

◦ Primary Web Service Discovery, Selection, Matching and Composition

◦ Addition of semantics with OWL-S, WSMO, SAWSDL

◦ Already many tools automate WSDL/SOAP development
◦ NetBeans, Eclipse, Visual Studio IDEs (JAX-WS library explored today)

◦ SOAP UI testing tool

◦ Language-specific libraries for ANY language/SDK

http://www.w3.org/TR/wsdl

WSDL Definition

Alternatives
REST, Servlets

◦ Simple HTTP GET/POST Exchange
◦ Undefined structure

◦ Ad-hoc invocation and parsing

◦ Dominant solution in every current Cloud API

◦ We will also explore Servlet
◦ development

◦ usage

◦ wrapping a WSDL into a Servlet

Who the hell uses
WSDL/SOAP in 2014?

◦ WSDL/SOAP pitfalls
◦ Still trickier than simple HTTP exchange

◦ Widely used in industry (~2000-2010)

◦ More and more disregarded: amazon, programmableweb

◦ Still has dedicated use cases
◦ SwEng modelling/usage + Semantics

◦ Exchange of Complex Types is easily supported

◦ Poor alternatives for semantics e.g. hREST

◦ HTTP (REST) APIs are handled in an ad-hoc manner

◦ Industrial applications

◦ R & D projects

◦ A lot to learn from it
◦ e.g. Complex Type exchange

Tutorial

Requirements

◦ NetBeans IDE Web (Java EE) Edition 6.x – 8.x

◦ JDK 6.x – 8.x

◦ Glassfish Server or Tomcat server (needs adaptation)

◦ Basic Java knowledge recommended

Set up WSDL Server
◦ New Project -> Web Application

“SensorServer”
◦ New class -> “SensorService”
◦ Add @WebService notation

◦ Add function getName
◦ return System.getProperty("user.name");

◦ Add function getTemperature(String
SensorID)
◦ Return

◦ Add suggested target namespace and
imports

◦ Automated method: add new Web Service

Test WSDL Server

◦ Clean and Build, Run

◦ Open
◦ http://localhost:8080/SensorServer/

Project homepage (index.html)

◦ http://localhost:8989/SensorServer/SensorServic
eService
Service Glassfish generated page

◦ Tester
◦ http://localhost:8080/SensorServer/SensorServic

eService?wsdl

◦ View generated WSDL
◦ http://localhost:8080/SensorServer/SensorServic

eService?wsdl

http://localhost:8080/SensorServer/
http://localhost:8989/SensorServer/SensorServiceService
http://localhost:8989/SensorServer/SensorServiceService?wsdl
http://localhost:8989/SensorServer/SensorServiceService?wsdl

WSDL Client

◦ New Java (or any kind of) Application

◦ New Web Service Client
◦ Enter WSDL URL

http://localhost:8080/SensorServer/SensorServic
eService?wsdl

◦ Generally do not enter package!
(Changes the namespaces)

◦ Drag’n’Drop service operations in
SensorClient.java

◦ Test local service
◦ Call getName, getTemperature

from Main and print results

http://localhost:8080/SensorServer/SensorServiceService?wsdl

result

WSDL Remote Client

◦ Two options:
◦ Re-generate client with

remote WSDL URL

◦ Parameterize the cline in
constructor (new URL)

◦ // has to be the new
WSDL

◦ Add new URL(“wsdl url”);
in Service constructure

◦ Catch Malformed URL
Exception
*some best practices

Servlet

◦ New Project -> Web Application

◦ New Servlet -> SensorServlet

◦ Add methods
◦ HTTPGet function

◦ Choose context

◦ Choose parameters

◦ Edit web.xml

◦ Add getName, getTemperature

◦ Clean and Build, Run
◦ Test in any browser

◦ Print in HTML!

Servlet vs Web Service
Conclusion

◦ Pros
◦ Very easily invoked with AJAX

◦ Suitable to build backend applications

◦ Security

◦ Developer Collaboration

◦ Cons
◦ Much more difficult to parse

◦ Not even going to build it 

Servlet as an
(OS) Service

◦ Bonus
◦ Wrap any Java application

◦ Add methods context initialized /
destroying

◦ Edit web.xml

Web.xml and OS Service
◦ Add in web.xml
◦ Under Servlet-mapping

◦ <url-pattern>/getName</url-pattern>

◦ <url-pattern>/getTemperature</url-pattern>

Service (OS)

◦ Under web-app

◦ <listener>
<listener-class>
package.AppStartUpClass
</listener-class>
</listener>

Add
◦ Implements ServletContextListener

@Override
public void
contextDestroyed(ServletContextEve
nt arg0) {

// Do cleanup operations here
}

@Override
public void
contextInitialized(ServletContextEvent
arg0) {

// Invoke the
daemon/background process code
}

Extensions

◦ Wrap WSDL in Servlet

◦ JAXB for ComplexTypes

◦ Invoke with AJAX from Web App

◦ Full event to follow at the IHU!
◦ You will call real sensors and actuators

Thank you
Follow us!

FB: ACM Student Chapter AUTH

